May 1, 2000 U. S. Nuclear Regulatory Commission Attn: Document Control Desk Mail Stop P1-137 Washington, DC 20555-0001 ULNRC-4231 DOCKET NUMBER 50-483 CALLAWAY PLANT UNIT 1 UNION ELECTRIC CO. FACILITY OPERATING LICENSE NPF-30 LICENSEE EVENT REPORT 2000-002-01 Automatic Reactor Trip Initiated by Reactor Coolant Pump Trip Caused by Motor Current Imbalance Due to Transmission System Disturbance (Reference: ULNRC-4200, dated March 13, 2000) The enclosed licensee event report is submitted in accordance with 10CFR50.73(a)(2)(iv) to report an event that resulted in an automatic actuation of an Engineered Safety Feature and automatic actuation of the reactor protection system. This revised licensee event report is submitted in order to clarify wording within the safety significance section which stated that no radioactive materials were released to the environment during this event. Although no unanticipated quantities of radioactive material were released during this event, insignificant amounts of radioactive material normally present within the secondary coolant were released via the Atmospheric Steam Dumps and the Turbine Driven Auxiliary Feedwater Pump steam exhaust during this event. R. D. Affolter Manager, Callaway Plant RDA/mdhu Enclosure ULNRC-4231 May 1, 2000 Page 2 cc: Mr. Ellis W. Merschoff Regional Administrator U.S. Nuclear Regulatory Commission Region IV 611 Ryan Plaza Drive, Suite 400 Arlington, TX 76011-8064 > Senior Resident Inspector Callaway Resident Office U.S. Nuclear Regulatory Commission 8201 NRC Road Steedman, MO 65077 Mr. Jack N. Donohew (2 copies) Licensing Project Manager, Callaway Plant Office of Nuclear Reactor Regulation U. S. Nuclear Regulatory Commission Mail Stop OWFN-4D3 Washington, DC 20555-2738 Manager, Electric Department Missouri Public Service Commission PO Box 360 Jefferson City, MO 65102 Records Center Institute of Nuclear Power Operations 700 Galleria Parkway Atlanta, GA 30339 | LICI | ENSEE | EVEN | T RE | PORT | (LE | R) | | | | | |--|--------------------------------------|---|------------|-----------------------------------|--|-----------------------------|-------------|----------------------|--|-------| | FACILITY NAME (1) | | | - | I DO | CKET NO | JMBER | 3 (2) | | PAGE (3) | | | Callaway Plant Unit 1 | | | | 0 | 5 0 | 0 | 1 | 8 3 | 1 OF | 0 4 | | Automatic Reactor Trip Imbalance Due to Extern | | | | | | - | Caused | By Mo | otor Cu | rrent | | EVENT DATE (5) | | | MBER (6) | | - | | | REPORT | DATE (7) | | | | | | | | Re | | MONTH | DAY | | AR | | 0 2 1 3 2 0 0 0 2 0 | 0 0 - | 0 | 0 | 2 - | 0 | 1 | 0 5 | 0 1 | 2 0 | 0 0 | | FACILITY NAMES | 01 | THER FACILIT | IES INVOLV | ED (8) | | DOCKE | T NÜMBER(S) |) | | | | | | | 0 | 5 | 0 | 0 | 0 | | | | | | | | 0 | 5 | 0 | 0 | 0 | | | | | MODE (9) 1 THIS REPORT IS SUBMITTED PU 20.2203(a)(1) 20.2203(a)(1) 20.2203(a)(2)(i) 20.2203(a)(2)(ii) 20.2203(a)(2)(iii) 20.2203(a)(2)(iii) 20.2203(a)(2)(iii) | 20.2
20.2
20.2
50.3
50.3 | 2203(a)(2)(v)
2203(a)(3)(i)
2203(a)(3)(ii)
2203(a)(4)
36(e)(1)
96(e)(2)
BSEE CONTAC | T FOR THIS | 50,
50,
X 50,
50,
50, | 73(a)(2)(i)
73(a)(2)(ii)
73(a)(2)(iii)
73(a)(2)(iv)
73(a)(2)(v)
73(a)(2)(vii) | | | Abstract
Text, NR | 2)(x)
(Specify in
below or in
C Form 366A |) | | J. D. Schnack, Supervising Engineer | | | | | IN THIS RI | 5 | 7 3 6 | 7 6 | - 4 3 | 3 1 9 | | CAUSE SYSTEM COMPONENT TURER | REPORTABLE
TO EPIX | | | SYSTEM | COMPO | | MANUFA | | PORTABLE
TO EPIX | | | GROOD STOREN SOMEONERY TURES | TOEFIA | | CAUSE | Jiolak | | | J | | TOEPIX | | | | | | | 131-14 | 1 1 | Î | 1-1 | Ť. | | | | SUPPLEMENTAL REPORT YES (If yes, complete EXPECTED SUBMISSION DATE) ABSTRACT [Limit to 1400 spaces, i.e. approximately, | х | NO | | | SUBA | ECTED
MISSION
FE (15) | MONTH | DAY | Y | LAR L | At 07:34 on February 13, 2000, automatic actuation of the reactor protection system (RPS) was initiated due to a low reactor coolant flow condition. This condition resulted when a reactor coolant pump (RCP) motor's protective relay sensed an electrical disturbance occurring on the transmission system, subsequently tripping the pump. The cause of the disturbance was attributed to a transmission line breaker failing to operate due to a defective electrical connection within the neighboring electric cooperative's protective relaying scheme. This resulted in an eight-minute system disturbance. At the time of the event, the plant was operating in Mode 1 at 100 percent power. Upon receiving the RPS actuation, all safety-related and nonsafety-related systems functioned per design. Ameren took corrective action to review the adequacy of their transmission system and RCP protective relaying setpoints. Completion of this review determined that Ameren's transmission system and RCP relay setpoints were adequate in the level of protection they provided and that the relays functioned per designed during the event. Ameren is also monitoring corrective actions of the electric cooperative, which has committed to installing backup relaying at the affected substation. ## LICENSEE EVENT REPORT (LER) TEXT CONTINUATION | FACILITY NAME (1) | DOG | DOCKET NUMBER (2) | | | | | | | | LER NUMBER (6) | | | | | | | | | | | PAGE (3) | | | | | | |-----------------------|-----|-------------------|---|---|---|---|---|---|---|----------------|----|---|---|---|------|---|---|----|----|---|----------|----|---|---|--|--| | | | | | | | | | | | YE | AR | | | | UMBE | | | RI | O. | | 7 | | | | | | | Callaway Plant Unit 1 | 0 | 5 | o | 0 | 0 | 4 | 8 | 3 | 2 | 0 | 0 | 0 | - | 0 | 0 | 2 | 6 | 0 | 1 | 0 | 2 | OF | 0 | 4 | | | TEXT (If more space is required, use additional NRC Form 366A's)(17) ### DESCRIPTION OF EVENT: At 07:34:18 on February 13, 2000, an automatic reactor trip was initiated due to a low reactor coolant flow condition following a trip of the 'B' Reactor Coolant Pump (RCP) motor. The RCP trip was initiated by a current imbalance sensed by the motor's protective relay. The current imbalance was a result of a transmission system disturbance. At the time of the event, the plant was operating in Mode 1 at 100 percent power. The system disturbance was initiated by a transmission line fault within a neighboring electric cooperative's transmission system. Due to a defective electrical connection within the electric cooperative's protective relaying scheme, the transmission line breakers protecting the affected line did not receive a trip signal to clear the fault. Since the breaker failure relaying scheme utilized the same circuitry containing the defective electrical connection, breaker failure logic was not initiated to trip the next breakers upstream of the transmission line fault. In addition, there was no redundant line relaying or local backup relaying on the substation transformer. As a result, the fault was not properly cleared from the electric cooperative's transmission system. For approximately the next eight minutes, multiple subsequent faults were introduced onto the system as the transmission line incurred damage and fell to the ground over an approximate distance of six miles. Ultimately, the fault condition was cleared following the failure of the distribution system transformer supplying the faulted transmission line. Approximately one minute into the event, the "B" RCP tripped due to a motor current imbalance, which resulted from the transmission system disturbance. The automatic reactor trip was initiated for a low reactor coolant flow condition due to the RCP trip. Shortly after the reactor trip, the three remaining RCPs and all main condenser circulating water pumps also tripped because of motor current imbalance. Due to the tripping of all RCPs, the pressurizer spray system was unavailable. Additionally, all main condenser circulating water pumps tripping affected the ability to use the main condenser as a heat sink. This resulted in reliance on the atmospheric steam dumps causing reactor coolant system average temperature (RCS Tavg) to increase from 557 to 562 degrees F. The combination of establishing natural circulation due to the loss of all RCPs and increasing RCS Tavg, caused a pressurizer in-surge raising RCS pressure to the pressurizer power-operated relief valve (PORV) setpoint. Prior to re-establishing the pressurizer spray system, both PORVs momentarily lifted once, relieving RCS pressure to the pressurizer relief tank. RCPs were restored approximately 32 minutes after initiation of the event. During this entire event, all safety-related and nonsafety-related systems and components functioned per design. ## LICENSEE EVENT REPORT (LER) TEXT CONTINUATION | FACILITY NAME (1) | DOCKET NUMBER (| DOCKET NUMBER (2) | | | | | | | LER NUMBER (6) | | | | | | | | | | | |-----------------------|-----------------|-------------------|----|---|---|-----|-------|--|----------------------|---|---|---|---|-----------|---|---|----|---|---| | | | | | | | | | | SEQUENTIAL
NUMBER | | | | | EV
IO. | | | | | | | Callaway Plant Unit 1 | 0 5 0 0 | 0 4 | 18 | 3 | 2 | 0 1 | o l o | | 0 | 0 | 2 | 5 | ō | 1 | 0 | 3 | OF | 0 | 4 | TEXT (If more space is required, use additional NRC Form 366A's)(17) #### BASIS FOR REPORTABILITY: The event is reportable per 10CFR50.72(b)(2)(ii) as an event resulting in automatic actuation of an Engineered Safety Feature (ESF), including the Reactor Protection System (RPS). ### CONDITION AT TIME OF EVENT: Mode 1: Power operations at 100% power. ### ROOT CAUSE: The cause of the transmission system disturbance, which created the RCP motor current imbalance, was attributed to a defective electrical connection within the neighboring electric cooperative's protective relaying scheme. This prevented proper breaker operation to clear their transmission system fault. ## CORRECTIVE ACTIONS: - Ameren is monitoring actions that are under way by the electric cooperative for implementing improvements to the protective relaying scheme at the affected substation. The electric cooperative has committed to installing backup relaying on the substation transformer before it is re-energized. - 2) Since breakers within the Ameren transmission system did not operate to clear the system disturbance prior to the RCPs tripping on motor current imbalance, the Ameren transmission system protective relaying setpoints were reviewed for adequacy. This review determined that the relaying functioned as designed during this event and that the relay setpoints were appropriate for providing the proper level of overlap in fault protection between the two company's protective relaying schemes. It was determined that the protective relay settings provided the optimal level of system protection and that they were consistent with North American Electric Reliability Council (NERC) and Mid-America Interconnected Network (MAIN) regional reliability council standards. - 3) RCP motor current imbalance relaying setpoints were also reviewed for adequacy as a result of this event. This review determined that the relay setpoints were appropriate for providing the proper level of motor protection and that the relay functioned as designed during the event. #### SAFETY SIGNIFICANCE: A probabilistic risk assessment (PRA) was conducted to evaluate the reactor trip and resulting plant response to the voltage transient. The PRA took into account the plant conditions immediately following the event and was considered to be a conservative estimate of the conditional probability of core damage. The PRA determined that the event was not significant with respect to the health and safety of the public. In response to the automatic reactor trip, the plant's engineered safety features functioned per their design. The radioactive material released to the # LICENSEE EVENT REPORT (LER) TEXT CONTINUATION | FACILITY NAME (1) | | DOCKET NUMBER (2) | | | | | | | LER NUMBER (6) | | | | | | | | | | | | PAGE (3) | | | | | |-----------------------|---|-------------------|---|---|---|---|---|---|----------------|---|---|---|----------------------|---|---|---|----|----------|---|---|----------|----|----|---|--| | | | | | | | | | | YEAR | | | | SEQUENTIAL
NUMBER | | | | RE | EV
IO | 1 | | Ē | | | | | | Callaway Plant Unit 1 | 0 | 5 | 0 | 0 | 0 | 4 | 8 | 3 | 2 | 0 | 0 | 0 | | o | 0 | 2 | - | 0 | 1 | 0 | 4 | OF | Ŏ. | 4 | | TEXT (If more space is required, use additional NRC Form 366A's)(17) environment as a result of this event was an insignificant fraction of the regulatory limits. ## PREVIOUS OCCURRENCES: There have been no previous reactor trips due to a system disturbance that was caused by malfunctioning equipment of a neighboring electric utility's transmission system. ## FOOTNOTES: The system and component codes listed below are per IEEE Standard 805-1984 system codes: AB Reactor Coolant System FK Switchyard System JE Engineered Safety Features Actuation System KE Heat Rejection System and IEEE Standard 803A-1983 component code; RLY Relay